Session 3A: Statistical considerations for 'omic data analysis

Jacob Price, PhD Maria Sevillano, PhD student

Engineering & Science Professors

Exploratory

- Indirect Gradient Analysis
- Unconstrained

Hypothesis-driven

- Direct Gradient Analysis
- Constrained
 - \circ using environmental data
- Hypothesis testing is available
 - many (? most ?) are permutational

<u>Outline</u>

- Data structures
- Transformations & Distances
- Ordination
- Clustering
- Hypothesis testing
 - PERMANOVA
 - ANOSIM
 - Differential abundance testing

Data Structures

OTU data table				
OTU ID	Taxonomy			
1	species A			
2	species A			
3	species B			
4	species C			

Abundance Matrix

Sample data table

Sample ID	Treatment	Host	
Sample 1	treated	А	
Sample 2	treated	В	
Sample 3	control	A	
Sample 4	control	В	
	1		

Challenges:

- 1. High-dimensional
- 2. Sparse
- 3. Data is compositional \rightarrow
- 4. Variation in (per sample) sequencing depth
- 5. Individual OTU counts are highly variable, both in scale and variance

8

Gloor et. al. (2017) DOI: 10.3389/fmicb.2017.02224

Transformations

Statistically Motivated

- 1. Normalizing transformations
 - reduce the effects of skew, kurtosis
- 2. Standardizing
 - places all descriptors on the same scale

Ecologically Motivated

- 1. Hellinger
 - a. de-emphasizes the effects of low abundance species
- 2. Chi-square
 - a. de-emphasizes the effects of high abundance species

Distance Measures

aro

Distance measures quantify how similar or dissimilar two objects (samples)

arc	•						
	Categorical	Phylogeneti		For two objects a, b, c	Metric	Semimetric	Nonmetric
Presence/	ice/	C	Others: Manhattan Euclidian Canberra Jaccard	Minimum Distance = 0 if (a == b) D(a, b) = 0	X	X	X
Absence Jaccard	Jaccard	UniFrac		Positive Distance if (a != b) D(a, b) > 0	X	X	
Quantitative abundance	Bray- Weighted	Chao Morisita-Horn Shannon	Symmetry D(a, b) = D(b, a)	X	X	X	
	Curtis	UniFrac		Triangle Inequality D(a, b) + D(b, c) >= D(a, c)	X		

Allow the statistical method (and it's limitations) to guide selection

Ordination

Identify relationships between species abundances and samples/sites

Indirect Gradient Analysis ⇔ Exploratory

- Unconstrained Ordination
- Maximize the ecological gradient identification
- Analog: Scatterplot

Direct Gradient Analysis ⇔ Hypothesis Driven

- Constrained Ordination
- Species responses are limited to combinations of predicting variables
- Analog: Multivariate Multiple Regression
- Significance test:
 - ▷ permutation-based ANOVA \rightarrow vegan::anova()

[11.3%]

PC2

Price & Sales (2019) In Purgatory

Clustering

Identifying groups of objects

- Partitional
- Agglomerative

eigenvector.com

<u>Unconstrained</u> ⇔ Exploratory

Constrained ⇔ Hypothesis Driven

- Spatial
- Temporal
- mvpart::mvpart()

* Aristizabal et. al. (2018) DOI:10.1093/jhered/esx110 * NOT the result of clustering. Used for illustrative purposes.

scikit-learn.org

Hypothesis Testing

Warnings

- observational studies cannot imply causation
- avoid data dredging
- be aware of highly correlated variables
- beware overfitting of model
- correct for multiple testing

Example Tests

- PERMANOVA
- ANOSIM
- Differential abundance testing

PERMANOVA - PERmutational Multivariate ANalysis of Variance

Test whether there is a significant difference between two or more groups.

Input: distance matrix

Pseudo F-statistic

$$F = \frac{SS_A \div (a - 1)}{SS_W \div (N - a)}$$

Statistical significance is obtained via permutation of objects within the dataset.

Warnings:

very sensitive to permutational scheme.

All figures adapted from: Anderson, M.J. (2017) DOI: 10.1002/9781118445112.stat07841

ANOSIM - Analysis of Similarities

Test whether there is a significant difference between two or more groups.

Input: distance matrix

• Calculated on <u>ranked</u> Distances

Test Statistic \rightarrow R

- relative within-group similarity.
- range [-1, 1]
- interpreted similarly to correlation coefficient

 $r_A - r_W$

R

Statistical significance is obtained via permutation of objects within the dataset.

Warnings:

- ANOSIM provides more output than PERMANOVA
 - but PERMANOVA is more robust

Buttigieg & Ramette (2014) DOI: 10.1111/1574-6941.12437

Differential Abundance Testing

Tests whether OTU abundances are different between two or more groups.

	Differential			
	Abundance	Variability		
CORNCOB	X	X		
DESeq2	X			
EdgeR	X			
metagenomeSeq	X			

Input and statistics depend upon precise method

• Must account for multiple testing

CORNCOB detects taxa that are :

- Diff abund and diff in variance
- Diff abund but no diff in variance
- Not diff abund but diff in variance

Highly useful in identifying dysbiosis

Thank-you

Jacob Price, PhD Maria Sevillano, PhD student

Engineering & Science Professors